Journal of Organometallic Chemistry, 391 (1990) C37–C40 Elsevier Sequoia S.A., Lausanne JOM 21078PC

Preliminary communication

Neuartige basische Liganden für die homogenkatalytische Methanolcarbonylierung

XXX *. (Dioxanylmethyl)phosphanrhodium-Komplexe als Modellverbindungen in der Methanolcarbonylierung

Ekkehard Lindner * und Erhard Glaser

Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-7400 Tübingen (B.R.D.) (Eingegangen den 23. Mai 1990)

Abstract

The cationic complex $[Rh(COD)(P \sim O)_2][PF_6]$ (3) is obtained from $[\mu$ -ClRh(COD)]₂ (1), NaPF₆/acetone and the ligand Me₃Si(CH₂)₃P(Ph)CH₂C₄H₇O₂ (2). In 3 COD is displaced by CO to form $[trans-(P \sim O)_2Rh(CO)_3][PF_6]$ (4). 4 readily eliminates carbon monoxide to form the complex $[trans-(P \sim O)(P O)Rh$ (CO)][PF₆] (6). The reaction is reversible. With rapid methyl migration oxidative addition of CH₃I to 6 affords the acyl complex $[cis-(P O)_2Rh(I)(COCH_3)][PF_6]$ (5) containing two Rh-O bonds. Heating of 5 in the presence of CO results in the reductive elimination of CH₃C(O)I, which upon hydrolysis is transformed to CH₃CO₂H. With cleavage of both Rh-O bonds back reaction occurs to give 4. The "opening and closing mechanism" of the dioxanylmethyl phosphane promotes the formation of the complexes within the reaction cycle.

In der Methanol(hydro)carbonylierung erwiesen sich Ether-Phosphane als Steuerliganden selektivitätssteigernd in Richtung Acetaldehyd und Ethylidendiacetat [2,3]. Bei Hochdruckreaktionen zeigte sich die Überlegenheit dioxanhaltiger Liganden gegenüber anderen Ether-Phosphanen bezüglich Umsatz und Selektivität [4,5]. Der von uns kürzlich vorgestellte Reaktionscyclus mit modellhaftem Charakter [6,7] für die Methanolcarbonylierung zu Essigsäure [8,9] läßt sich auch unter Verwendung von Silylalkyl(ether-phosphanen) [10] verwirklichen, in denen der für die Teilschritte oxidative Addition von Methyliodid, Methylgruppenwanderung und reduktive Eliminierung von Acetyliodid wichtige Sauerstoffdonor in einem Dioxan-

^{*} Für XXIX. Mitteilung siehe Lit. 1.

Schema 1

rest enthalten ist. Dieser Ligandentyp unterscheidet sich außerdem von entsprechenden kieselgelfixierten Ether-Phosphanen nur im Ersatz des Trägermaterials durch eine Methylgruppe.

Der als Vorstufe für den Reaktionscyclus dienende Silylalkyl(ether-phosphan)rhodium-Komplex 3 bildet sich bei der Umsetzung von $[(\mu-ClRh(COD)]_2 (1) mit dem Liganden 2 in Gegenwart von NaPF₆ (Schema 1). Die nur in Lösung IR- und ³¹P{¹H}-NMR-spektroskopisch (vgl. Tab. 1) nachweisbare Tricarbonylspezies 4 erhält man durch Austreiben von COD aus dem Rhodium-Komplex 3 mit CO in$

Tabelle 1

 $^{31}P{^{1}H}-NMR-Daten (CH_2Cl_2, -40°C, \delta in ppm, J in Hz) und charakteristische IR-Valenzschwingungen (cm⁻¹) in den Spektren von 3-6$

	δ ^a	¹ J(RhP)	$\nu_{as}(C_2O)^{b}$	ν(C=O), ν()C=O) ^b
3	5.8 (d)	141.8	1104sst	
4	25.9 (d), 26.7 (d),	70.9		2081s ^c
	27.5 (d), 28.2 (d),	70.9		2032sst ^c
	28.8 (d), 29.5 (d)	70.9		2016sst ^c
5	27-44 (m)		1074sst	1693st
6	16.6 (d)	123.5	1105sst	1989sst

^a Ext. Standard 1 proz. Phosphorsäure/[d⁶]Aceton. ^b In KBr. ^c In CH₂Cl₂.

Dichlormethan bei -40 °C. Leitet man durch eine CH₂Cl₂-Lösung von 4 bei 20 °C Argon, so bildet sich unter CO-Verlust der Monocarbonylrhodium-Komplex 6. In den spektroskopischen Daten stimmt 6 (vgl. Tab. 1) mit ähnlichen Komplexen [6,7] überein und zeigt wie diese fluktuierendes Verhalten des Etherrestes, das selbst bei -80 °C nicht eingefroren werden kann. Im IR-Spektrum von 6 tritt eine charakteristische intensive CO-Absorption auf. Nach oxidativer Addition von CH₃I an 6 findet eine rasche Methylwanderung und anschließend die Knüpfung einer zweiten Rhodium-Sauerstoff-Bindung statt. Wahrscheinlich bildet sich der Acylcarbonylrhodium-Komplex 5 über die mit ähnlichen (Ether-Phosphan)-Liganden kürzlich nachgewiesenen Zwischenstufen [6]. Im IR-Spektrum von 5 erscheint entsprechend der chelatartigen Bindung beider (Ether-Phosphan)-Liganden nur *eine* langwellig verschobene Bande für $\nu_{as}(C_2O)$ (vgl. Tab. 1) [11]. Außerdem ist das IR-Spektrum von 5 durch eine Keto-($\bigcirc C=O$)-Absorption charakterisiert [12,13]. Die vier Asymmetriezentren im dioxanhaltigen Komplex 5 führen im ³¹P{¹H}-NMR-Spektrum zu einem nicht aufgelösten Multiplett.

Der Reaktionscyclus läßt sich gemäß Schema 1 schließen. Unter CO-Atmosphäre kann mit 5 bei 100 °C in Dioxan GC-MS-analytisch Essigsäure nachgewiesen werden. Im ${}^{31}P{}^{1}H{}$ -NMR-Spektrum beobachtet man die Rückbildung des Start-komplexes 4. Vermutlich wird Acetyliodid aus 5 reduktiv eliminiert und anschließend zu Essigsäure hydrolysiert.

Experimenteller Teil

Die Umsetzungen wurden in gereinigter Argonatmosphäre durchgeführt. Lösungsmittel waren getrocknet und Argon-gesättigt.

 $(\eta^{4}-1,5$ -Cyclooctadien)-cis-bis[(1,4-dioxanyl-2-methyl)phenyl(3-trimethylsilylpropyl)phosphan]rhodium(I)-hexafluorophosphat (3). Zu einer Lösung von 151 mg (0.9 mmol) NaPF₆ und 197 mg (0.4 mmol) 1 in 10 ml Aceton tropft man unter Rühren innerhalb 5 min bei -40° C 519 mg (1.6 mmol) 2 in 5 ml Aceton. Nach 1 h wird das Solvens abgezogen und durch 10 ml CH₂Cl₂ ersetzt. Nach Abfiltrieren (P4) von NaCl engt man die Lösung im Vakuum auf 2 ml ein und fällt das gelbe Produkt bei -40° C langsam mit ca. 100 ml n-Pentan aus. 3 wird abfiltriert (P4), mit 10 ml n-Pentan gewaschen und im Vakuum getrocknet. Ausbeute 641 mg (78%). Zers.-P. 62°C. IR (KBr, cm⁻¹): 842 sst (ν (PF₆)). ³¹P{¹H}-NMR (CH₂Cl₂, -40° C, ppm): δ -145.4 (sept, ¹J(PF) 711.4 Hz; PF₆). (Gef.: C, 49.47; H, 7.26; F, 11.10; Rh, 10.53; Molmasse massenspektrometr. (FAB), 859 (Kation). C₄₂H₇₀F₆O₄P₃RhSi₂ ber.: C, 50.19; H, 7.02; F, 11.34; Rh, 10.24%. Molmasse 1027.9).

Tricarbonyl-trans-bis[(1,4-dioxanyl-2-methyl)phenyl(3-trimethylsilylpropyl)phosphan]rhodium(1)-hexafluorophosphat (4). Durch eine Lösung von 411 mg (0.4 mmol) 3 in 5 ml CH₂Cl₂ leitet man bei -40 °C solange CO (ca. 10 min), bis die Lösung farblos geworden ist. Die Messungen erfolgen unter CO-Atmosphäre. ³¹P{¹H}-NMR (CH₂Cl₂, -40 °C, ppm): δ -145.3 (sept, ¹J(PF) 711.4 Hz; PF₆).

Carbonyl-trans-bis[(1,4-dioxanyl-2-methyl)phenyl(3-trimethylsilylpropyl)phosphan-P;O',P']rhodium(I)-hexafluorophosphat (6). Durch eine Lösung von 411 mg (0.4 mmol) 4 in 5 ml CH₂Cl₂ leitet man bei 20°C 30 min Argon. 6 wird bei -40°C mit 50 ml n-Pentan ausgefällt, abfiltriert (P4), mit 10 ml n-Pentan gewaschen und im Vakuum getrocknet. Ausbeute 269 mg (71%). Zers.-P. > 35°C. IR (KBr, cm⁻¹): 843 sst ($\nu(PF_6)$). ³¹P{¹H}-NMR (CH₂Cl₂, -50°C, ppm): δ -145.4 (sept, ¹J(PF) 711.4 Hz; PF₆). (Gef.: C, 44.64; H, 6.44; F, 12.02; Rh, 11.53; Molmasse massenspektrometr. (FAB), 779 (Kation). C₃₅H₅₈F₆O₅P₃RhSi₂ ber.: C, 45.45; H, 6.32; F, 12.33; Rh, 11.13%; Molmasse, 924.8).

a-Acetyl-b-iodo-fc,ed-bis[(1,4-dioxanyl-2-methyl)phenyl(3-trimethylsilylpropyl)phosphan-O,P]rhodium(III)-hexafluorophosphat (5). Eine Lösung von 185 mg (0.2 mmol) 6 in 2 ml CH₂Cl₂ wird mit 0.1 ml CH₃I bei 20 °C gerührt. Nach 5 h werden die flüchtigen Bestandteile im Vakuum entfernt. Der Rückstand wird dreimal mit je 3 ml n-Pentan gewaschen, wobei der gelbe Acylkomplex 5 analysenrein anfällt. Ausbeute 196 mg (92%). Zers.-P. 107 °C. IR (KBr, cm⁻¹): 841sst (ν (PF₆)). ³¹P{¹H}-NMR (CH₂Cl₂, -40 °C, ppm): δ -145.2 (sept, ¹J(PF) 711.4 Hz; PF₆). (Gef.: C, 41.10; H, 6.17; F, 11.34; I, 10.76; Rh, 9.98; Molmasse massenspektrometr. (FAB), 921 (Kation). C₃₆H₆₁F₆IO₅P₃RhSi₂ ber.: C, 40.53; H, 5.76; F, 10.69; I, 11.90; Rh, 9.65%; Molmasse 1066.8).

Rückreaktion von 5 zu 4. 1,7 mg (0.1 mmol) 5 wird in 2 ml Dioxan unter CO-Gas bei 100 °C 1 h gerührt. Die Lösung wird ${}^{31}P{}^{1}H{}$ -NMR-spektroskopisch (entspricht 4, vgl. Tab. 1) und GC-MS-analytisch (Essigsäure) untersucht.

Spektren, Elementaranalysen. Fast-Atomic-Bombardment-Massenspektren: Varian MAT 711A (Nitrobenzylalkohol, 70 eV, 30 ° C). IR-Spektren: Bruker IFS 48. ³¹P{¹H}-NMR-Spektren: Bruker WP80 (32.39 MHz; ext. Standard 1 proz. Phosphorsäure/ $[d^6]$ Aceton). GC-MS: Carlo Erba Instruments Fractovap 2900 mit Dünnfilm-Quarz-Kapillarsäule DWAX, 0.25 μ , Länge 60 m und Finnigan MAT 112 S. Mikroelementaranalysen: Carlo Erba, Modell 1106 und Perkin-Elmer, Modell 4000 Atomabsorptions-Spektrophotometer.

Dank. Wir danken dem Bundesminister für Forschung und Technologie (BMFT), der Wacker-Chemie GmbH und dem Verband der Chemischen Industrie e.V., Fonds der Chemischen Industrie für die finanzielle Förderung dieser Arbeit. Der Degussa und der BASF Aktiengesellschaft sind wir für die Überlassung wertvoller Ausgangschemikalien zu Dank verpflichtet.

Literatur

- 1 E. Lindner, E. Glaser, H.A. Mayer und P. Wegner, J. Organomet. Chem., JOM 21080 (im Druck).
- 2 E. Lindner, S. Meyer, P. Wegner, B. Karle, A. Sickinger und B. Steger, J. Organomet. Chem., 335 (1987) 59.
- 3 E. Lindner, U. Schober, E. Glaser, H. Norz und P. Wegner, Z. Naturforsch., B 42 (1987) 1527.
- 4 E. Lindner, A. Sickinger und P. Wegner, J. Organomet. Chem., 349 (1988) 75.
- 5 E. Lindner, J.-P. Reber und P. Wegner, Publikation in Vorbereitung.
- 6 E. Lindner und H. Norz, Chem. Ber., 123 (1990) 459.
- 7 E. Lindner und B. Andres, Chem. Ber., 121 (1988) 829.
- 8 I. Wender, Catal. Rev.-Sci. Eng., 26 (1984) 303.
- 9 D. Forster, J. Am. Chem. Soc., 98 (1976) 846.
- 10 E. Lindner, A. Bader, E. Glaser und P. Wegner, J. Mol. Catal., 56 (1989) 86.
- 11 L. Horner und G. Simons, Z. Naturforsch., B 39 (1984) 497.
- 12 M.A. Bennett, J.C. Jeffrey und G.B. Robertson, Inorg. Chem., 20 (1981) 323.
- 13 H.D. Empsall, E.M. Hyde, C.E. Jones und B.L. Shaw, J. Chem. Soc., Dalton Trans., (1974) 1980.